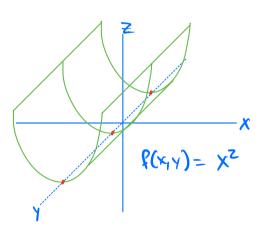
MATH 112A Review: Geometric meaning of gradient and Linearization

Facts to Know:


Let $f: \mathbb{R}^2 \to \mathbb{R}$, we define the gradient ∇f of f at the point p to be the vector:

$$\nabla f(p) =$$

Geometrical interpretation:

- If $\nabla f(p)$ is a vector, then the vector $\nabla f(p)$ is the direction that the most quickly away from p.
- $||\nabla f(p)||$ is the

in direction $\nabla f(p)$.

The linearization of f at the point p is:

$$L_f(x,y) =$$

Examples: Let $f(x,y) = e^{xy^2}$.

1. What is the gradient of f at the point (1,2)?

2. What direction increases the fastest from the point (1,2) and what is the rate of change in the same direction?

3. What is the linearization of f at the point (1,2)?